A simple way to reduce factorization problems to SAT

نویسنده

  • Davide Maran
چکیده

As Cook-Levin theorem showed, every NP problem can be reduced to SAT in polynomial time. In this paper I show a simpler and more efficent method to reduce some factorization problems to the satisfability of a boolean formula.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Encoding Basic Arithmetic Operations for SAT-Solvers

In this paper we start an investigation to check the best we can do with SAT encodings for solving two important hard arithmetic problems, integer factorization and discrete logarithm. Given the current success of using SAT encodings for solving problems with linear arithmetic constraints, studying the suitability of SAT for solving non-linear arithmetic problems was a natural step. However, ou...

متن کامل

The SAT solving method as applied to cryptographic analysis of asymmetric ciphers

The one of the most interesting problem of discrete mathematics is the SAT (satisfiability) problem. Good way in SAT solver developing is to transform the SAT problem to the problem of continuous search of global minimums of the functional associated with the CNF. This article proves the special construction of the functional and offers to solve the system of nonlinear algebraic equation that d...

متن کامل

$n$-factorization Property of Bilinear Mappings

In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on  a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of  level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...

متن کامل

How to fake an RSA signature by encoding modular root finding as a SAT problem

Logical cryptanalysis has been introduced by Massacci and Marraro as a general framework for encoding properties of crypto-algorithms into SAT problems, with the aim of generating SAT benchmarks that are controllable and that share the properties of real-world problems and randomly generated problems. In this paper, spurred by the proposal of Cook and Mitchell to encode the factorization of lar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.02844  شماره 

صفحات  -

تاریخ انتشار 2017